Der Browser den Sie verwenden ist sehr alt.

Wir können daher nicht sicherstellen, dass jede Funktion (Gestaltung, Bilder und zusätzliche Funktionen) dieser Internetseite im vollen Umfang zur Verfügung steht. Bitte nutzen Sie eine aktuellere Browserversion.
Wir bitten um Ihr Verständnis.
Startseite > Forschung > Publikationen / Publications > Splittgerber

Dr. Splittgerber

2021

Salvador, R., Biagi, M. C., Puonti, O., Splittgerber, M., Moliadze, V., …, & Ruffini, G. (2021). Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages. In Makarov, S., & , Noetscher, Gregory, Nummenmaa, A. (Eds.), Brain Hum. Body Model. 2020 (1st ed., pp. 119–135). Cham: Springer International Publishing.
Splittgerber, M., & Nees, F. (2021). Gehirnentwicklung im Jugendalter. Jugendhilfe, 59(4).

Das Jugendalter ist der {\"{U}}bergang von der sp{\"{a}}ten Kindheit ins Erwachsenenalter – eine Entwicklung, die von vielen Kindern und Jugendlichen herbeigesehnt wird: endlich Er- wachsen! Doch Erwachsen werden ist auch nicht immer leicht. Die Jugendzeit stellt einen Menschen vor gro{\ss}e Herausforderungen. Von sozialen Ver{\"{a}}nderungen, dem Erleben starker Gef{\"{u}}hle, der Rollen- und Identit{\"{a}}tsfindung oder dem Suchen nach Neuem ist alles dabei. Zu allem {\"{U}}berfluss macht auch das Gehirn vielf{\"{a}}ltige Ver{\"{a}}nderungen durch, die mit dem Aspekt der Jugendzeit als Phase gro{\ss}er Herausforderungen zusammenzu- h{\"{a}}ngen scheinen. Durch strukturelle und funktionelle Umbauarbeiten wird unser Gehirn besser vernetzt und spezialisierter. Das Gehirn ist in dieser Zeit extrem formbar und sucht in besonderer Weise nach neuem Input, vor allem aus sozialen und emotionalen Kontexten. Die besondere Formbarkeit macht das Gehirn allerdings auch anf{\"{a}}lliger f{\"{u}}r negative Einfl{\"{u}}sse, die sich bis in das Erwachsenenalter auswirken k{\"{o}}nnen.

2020

Sierawska, A., Moliadze, V., Splittgerber, M., Rogge, A., Siniatchkin, M., & Buyx, A. (2020). First Epileptic Seizure and Initial Diagnosis of Juvenile Myoclonus Epilepsy (JME) in a Transcranial Direct Current Stimulation (tDCS) Study– Ethical Analysis of a Clinical case. Neuroethics, 13(3), 347–351. doi:10.1007/s12152-020-09444-6.

We discuss an epileptic incident in an undiagnosed 13-year old girl participating in a clinical study investigating the effects of transcranial direct current stimulation (tDCS) in healthy children and adolescents. This incident poses important research ethics questions with regard to study design, especially pertaining to screening and gaining informed consent. Potential benefits and problems of the incident also need to be considered. The ethical analysis of the case presented in this paper has been informed by an in-depth interview conducted after the incident with the child and the accompanying parent. We discuss the ethical implications of the epileptic incident, the need for improving screening procedures for studies with minors and for providing more effective communication. This case also underscores the problem of undetected teenage epilepsy in neuropsychological clinical studies and the necessity of raising more awareness of this issue. Since research in tDCS is an active and expanding field, we conclude with providing some recommendation that could ensure that future research on tDCS, or other therapies and neuro-interventions where there is a risk of triggering an epileptic seizure, take into account the specifics of teenage epilepsy and the need for more thorough provision of information during the process of gaining informed consent.

Splittgerber, M.*, Japaridze, N.*, Sierawska, A., Gimenez, S., …, Siniatchkin, M., & Moliadze, V. (2020). First generalized tonic clonic seizure in the context of pediatric tDCS – A case report. Neurophysiol. Clin., 50(1), 69–72. PMID:31848082, doi:10.1016/j.neucli.2019.11.002.
Splittgerber, M., Suwelack, J. H., Kadish, N. E.*, & Moliadze, V.*. (2020). The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation. Neural Plast., 2020, 1–14. PMID:32855633, doi:10.1155/2020/8896423.

The aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10–16 years) and 28 adults (20–30 years). Participants were stimulated four times with 20 Hz and 140 Hz tACS, tRNS, and sham stimulation (1 mA) for 10 minutes over the left M1 HAND . Single-pulse MEPs (motor evoked potential), short-interval intracortical inhibition, and facilitation were measured by TMS before and after stimulation (baseline, 0, 30, 60 minutes). We also investigated aspects of tolerability. According to the individual MEPs response immediately after sham stimulation compared to baseline (Wilcoxon signed-rank test), subjects were regarded as responders or nonresponders to sham. We did not find a significant age effect. Regardless of age, 140 Hz tACS led to increased excitability. Incidence and intensity of side effects did not differ between age groups or type of stimulation. Analyses on responders and nonresponders to sham stimulation showed effects of 140 Hz, 20 Hz tACS, and tRNS on single-pulse MEPs only for nonresponders. In this study, children and adolescents responded to 1 mA tRNS and tACS comparably to adults regarding the modulation of motor cortex excitability. This study contributes to the findings that noninvasive brain stimulation is well tolerated in children and adolescents including tACS, which has not been studied before. Finally, our study supports a modulating role of sensitivity to sham stimulation on responsiveness to a broader stimulation and age range.

Splittgerber, M., Salvador, R., Brauer, H., Breitling-Ziegler, C., …, Moliadze, V.*, & Siniatchkin, M.*. (2020). Individual Baseline Performance and Electrode Montage Impact on the Effects of Anodal tDCS Over the Left Dorsolateral Prefrontal Cortex. Front. Hum. Neurosci., 14. doi:10.3389/fnhum.2020.00349.